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1. INTRODUCTION 

According to the Frascati Manual guidelines [1], knowledge 
gain (KG) represents an important challenge in the field of 
industrial research and development (R&D). Following Industry 
4.0 logic, KG can be improved through enabling technologies, 
such as the Internet of Things (IoT) [2] and using digitised 
traceability [3] for the automation of processes [4]. Specifically, 
in manufacturing control systems, traceability plays a crucial role 
in the monitoring of the state of specific components in a system 
[5]. As traceability technologies can be applied to industrial 
processes, barcode and/or QR code [6]-[12] technologies are 
useful for supply chain management [11], [12]. The traceability 
of processes is, therefore, an important part of the risk 
management process [13] and can also be applied to testing 
procedures [14]-[16], leading to a general improvement of 
working and testing protocols by means of IoT-supporting 
technology upgrades and multiple data systems [17]-[18]. 
Another important issue for the optimisation of manufacturing 
production is process mapping, which can be implemented by 
4M (manpower, material, methodology, machine) charts [19]-
[20], the PDCA (Plan-Do-Check-Act) cycle [21]-[22] (according 
to ISO 9001:2015), Xm-R charts [23]-[24] and p-control charts 
[25]-[27]. According to recent literature, there are alternative 
approaches that facilitate process mapping, namely the enhanced 

DMAIC (define, measure, analyse, improve, control) or 
eDMAIC model [28], machine learning oriented towards 
production quality [29] and artificial neural networks that enable 
predictive maintenance in Industry 4.0 [30]. Controlling sensors 
within production processes could be adopted to check robotic 
arm control and actuation if they are interconnected through an 
intelligent unit [31].  

In this paper, we propose a traceable approach to 
manufacturing control systems in which the maintenance 
process is organised in a structured and systematic way. 
Traceable and systematic processes make it possible to identify 
each phase and eventually take corrective action. This is 
particularly difficult if there is no structure or schedule for these 
activities, even if it may not appear relevant at first sight. 
Focusing on an industry working with train-part processing [32] 
and testing as a case study, we apply the proposed protocols to 
the turning processes and pneumatic testing of train braking 
systems using digitised traceability (see scheme in Figure 1). The 
proposed protocols are based on the concepts described in the 
state-of-the-art, which includes the new auto-adaptive intelligent 
control facilities and an actuation process improved by artificial 
intelligence (AI), as set out in Figure 2. In particular, we will 
discuss a generic protocol usable for all manufacturing industries 
and another two specific protocols that relate to the case study 
presented, which concern the process and test mapping of 
turning-machine operations and braking tests, respectively. 
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This paper introduces new maintenance and testing protocols regarding processes in the railway industry. The first protocol is general 
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industry and concern the turning-machine production line and the pneumatic testing of train braking systems, respectively. This study 
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auto-adaptive Industry 5.0 facilities. 
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2. FIRST PROTOCOL: GENERIC PROCEDURE FOR PART 
PROCESSING 

When the maintenance of a locomotive or a generic wagon is 
required, faulty components are generally disassembled, 
investigated and restored through the manufacturing process, 
mostly based on cutting-edge technologies. Several procedures 
can be carried out for this purpose, such as turning, cutting, 
milling, reaming and polishing, depending on the type of 
renovation required. Usually, a faulty component is either broken 
or damaged in terms of its functional characteristics. For 

example, a gear wheel can be worn, and the shape of the teeth 
may deviate from the original design, generating an inefficiency 
within the system where it is employed. The restoration of such 
a component could therefore be carried out on the profiling of 
the gear shape, e.g. by using a turning machine. The evaluation 
of the problem and the process for solving it are usually achieved 
through ‘operator experience’, producing a maintenance process 
that is strictly dependent on the operator and, thus, not 
repeatable. Each operator in a specific workshop has different 
skills and degrees of experience in the field, leading to 
components that are restored and tested in several different 
ways. Moreover, restoring the components to their original and 
defect-free condition is challenging. The different wear 
mechanisms of industrial components (adhesive, fatigue, etc.) 
and different stress and strain concentration mechanisms 
(asperity, dent, etc.) can irreversibly affect the overall amount of 
wear. 

Therefore, the maintenance process restores components to 
their original functionality, but it may marginally affect the 
amount of wear of these components. The restoration process 
will therefore increase the amount of wear. After maintenance, 
the wear evolution and the maximum operating time of the 
component will be affected, which may change the effectiveness 
of the components over time. 

A possible solution to this, proposed by the present authors, 
is based on developing a traceable approach, where every single 
phase of the maintenance process is organised in a structured and 
systematic way, i.e. process mapping and test mapping. This can 
be clearly represented by a theoretical protocol, as shown in the 
flow chart in Figure 3. In this case, the protocol is meant to be 
generally applied, independent of the type of component and 
operation.  

The main protocol is applied to the workpiece that requires 
maintenance. It becomes clear that the workpiece is not working 
correctly, and some critical issues are therefore investigated. 
First, a QR code reference would be fundamental in gaining 
insights into the history of the workpiece, namely, the life cycle 
of the component, the total number of maintenance operations 
it has undergone and the type of maintenance. The overall 

 

Figure 1. Study case [32]: (a) functional scheme of the layout designed for 
industrial traceability; (b) optical sensor system that estimates accuracy in 
turning processes; (c) schematic layout of the bench designed for the 
pneumatic testing of train braking systems.  

 

Figure 2. Intelligent control and actuation process for the generic working 
protocol in manufacturing processes. 
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amount of wear of the component can be inferred based on an 
estimate of the operating working cycles and a model of the 
evolution of the amount of wear related to that specific 
component. 

The QR code has to be unique to that specific component. 
Additionally, for predictive maintenance purposes, the QR code 
also indicates the life-prediction curve of the tool, plotted in 
terms of an Index of Quality (IQ) as a function of the number of 
working cycles. An example of such a diagram is plotted in Figure 
4. It can be theoretically described by an exponential law that fits 
Equation 1: 

𝐼𝑄(𝑥) = e−𝜆𝑥 , (1) 

where λ is a coefficient that determines the slope of the curve 
and x is the number of working cycles.  

The IQ values are expected to vary from 0 to 1, indicating an 
end-life and a new component, respectively. Generally, the IQ 
value and its evolution within the working cycles are closely 

related to the overall amount of wear of the component. The 
scope of the maintenance is to restore the value of the IQ as 
close as possible to the unit value. However, since the amount of 
wear cannot be restored to its original state, the time evolution 
of the IQ value is expected to be significantly affected after the 
maintenance process. More specifically, this might lead to an 
increase in the slope of the curve (i.e. an increase in the value of 
t in Equation (1), indicating a more rapid degradation of the 
component while working. This is shown in the theoretical 
diagram in Figure 5. 

In summary, the QR code provides all the required historical 
data that could play a key role in defining the problem. Indeed, 
the problem is, therefore, analysed and the activities scheduled in 
order to proceed with the maintenance process. In this phase, all 
the features and parameters of the workpiece, which are found 
to be out-of-tolerance, have to be corrected by applying 
manufacturing procedures, which, in the case of a metallic 
material, consist of several machines that mainly perform milling 
and turning. Each process has its own characteristics, in terms of 

 

Figure 3. Macro protocol designed for general maintenance operations in the railway industry. 

 

Figure 4. Theoretical exponential model describing the residual lifetime of a 
workpiece as a function of a specific Index of Quality (IQ). 

 

Figure 5. Theoretical exponential model describing the tool life curves 
predicted after maintenance in the case of a generic component. The IQ is 
enhanced, as shown by the red-dotted curve and compared to the black one, 
but the workpiece is more sensitive and degrades faster. 
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parameters, that need to be correctly set and optimised. This will 
be analysed in depth in relation to turning in Section 3. At the 
first attempt, based on the set parameters and the wear grade of 
the workpiece, a draft tool life curve after maintenance could be 
predicted. 

When machines and procedures are set, the process mapping 
suggests that the maintenance procedure be initiated. The 
process parameters are optimised by referring to the historical 
data and based on the requirements of the maintenance process. 
If possible, in this phase, specific outputs should be assumed to 
be the ‘fingerprints’ of the process. This approach has also been 
followed by other research concerning similar manufacturing 
engineering fields [32], [33]. These outputs may provide 
information on how best to conduct the restoration process, and, 
if the values measured are out-of-range, they can trigger proper 
actuation controls that enable the correction of the previously set 
process parameters, as suggested in Figure 3.  

After the workpiece has been restored and fixed, proper tests 
should be selected and carried out to check the quality of the 
restoration. Of course, these tests are made for the key functional 
features that are required to be improved/fixed. Data is thus 
collected in order to be analysed. 

The data analysis is made by checking that the values of the 
key functional features are within the designed working intervals. 
If this is not the case, the flow chart indicates the necessity of 
reconsidering the problem definition and, therefore, proceeding 
with a second round as soon as all the functional values are 
measured within the tolerance range. This step is important for 
a systematic evaluation of a successful maintenance process, 
which gives an objective evaluation of the result without relying 

only on the operator’s experience. Of course, it is fundamental 
that all the functional features are correctly identified in the phase 
definition.  

At the end of the process, the protocol suggests that the QR 
code be updated with the new data. A new life-cycle diagram is 
then built by following the description previously given. This 
data will be the starting point for the next phase of maintenance 
of a specific workpiece, given that each component is uniquely 
defined by a QR code.  

In Sections 3 and 4, two specific cases in which this approach 
has been applied are described and the interconnection between 
the different protocols is also highlighted. 

3. SECOND PROTOCOL: TURNING MACHINE CONTROL AND 
ACTUATION 

By following the general approach described in Section 2, a 
study case is now discussed concerning its application to turning 
processes for renovating axisymmetric workpieces. The flow 
chart shown in Figure 6 is made by adapting the theoretical 
approach of the diagram seen in Figure 5. The first steps are the 
same and, therefore, start with the workpiece definition, 
identification of the key functional features and analysis of the 
historical data given by the unique QR code. To highlight the 
chart’s interconnections, the same colour (blue) shows those 
process steps that are mainly the same. Conversely, the grey 
colour characterises those elements identified as specific to a 
turning operation.  

Turning is a well-known machining process that is based on 
the usage of a horizontal lathe. Usually, the processed workpiece 

Problem

 

Figure 6. Maintenance protocol adapted to turning operations. 
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has axisymmetric features. Several operations can be done by 
turning depending on the tools used and the process approach, 
e.g. drilling, cutting, threading and polishing. The main 
characteristic of turning processes is that the workpiece is 
clamped at the machine spindle, which rotates at a set rotational 
speed. The cutting tool is thus making contact with the rotating 
workpiece (see Figure 7), interacting with the workpiece and 
generating the so-called chip removal.  

A turning operation is correctly managed by setting four main 
process parameters: 

• Depth of cut (mm) 

• Spindle speed (rpm) 

• Feed rate (mm/rev) 

• Presence of lubricant/refrigerant. 
 

These parameters are extremely important for the optimisation 
of the output characteristics. By identifying the most critical 
outputs, i.e. geometrical and dimensional tolerances and surface 
roughness, those parameters can be related in order to apply an 
in-line process control. The optimisation of turning operations 
has been studied by several researchers [34]-[36]. The retroactive 
controls designed within the process mapping have the role of 
being actuated for the in-line correction of the process parameter 
values. As outputs to be used for the monitoring of the turning 
process, force and wear measurements are the most consistent. 
The force is measured by using a piezoelectric load cell mounted 
on the cutting tool. The tool wear is monitored by using vision 
systems, e.g. image vision technologies, laser systems or optical 
coordinate-measuring machines (CMMs). The surface roughness 
of the workpiece is another key feature; however, the in-line 
monitoring of such parameters may be difficult to undertake. Of 
course, other features may be involved in this analysis, but this 
would be strictly dependent on the functional properties of the 
tool being renovated. The support given by the actuation systems 
helps in terms of cycle time and maintenance efficiency. These 
elements represent the main limitation of the manual 
maintenance carried out only through operator experience.  

Quality control can clearly only be done after the turning 
process to test the quality of the restoration process. As already 
described in the generic flow chart in Figure 2, the key features 
are investigated to check the success of the maintenance 
operation, and the correct instrumentation has to be selected and 
employed. Data is therefore analysed and actions have to be 
taken if there is an indication that any features are out-of-
tolerance, meaning that the process requires additional steps to 
ensure the component attains the desired geometry and 
functionality. 

 

 

Figure 7. Schematic drawing showing the functional principle of a turning 
operation. 

 

Figure 8. Maintenance protocol adapted to turning operations. 
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As a last step, each operation is recorded within the unique 
QR code with a definition of each of the main steps carried out 
and the generation of a new life-cycle curve, as shown in Figure 
5. 

4. THIRD PROTOCOL: BRAKING SYSTEM AND PNEUMATIC 
TEST OF TRAINS 

The two previous protocols, discussed and shown in Figure 3 
and Figure 8, describe process mapping charts concerning the 
maintenance process steps for a railway workpiece. The 
following section proposes that the same scheme, as discussed in 
the introduction of this article and shown in Figure 2, be adapted 
for a particular testing process carried out when checking the 
efficiency of locomotive brakes. The scheme is therefore referred 
to as the test mapping chart (see Figure 8). The quality control of 
locomotive brakes is an important test for safety and efficiency 
reasons. As with the previous maintenance mapping charts, every 
process starts with an analysis of the QR code, which is unique 
and should include all the important information concerning the 
locomotive’s historical data, with particular reference to the 
brake tests. 

A typical braking system for locomotives consists of a 
pneumatic circuit enabling the mechanical pads to act on the 
rotating wheel. This system starts from the locomotive, and a 
circuit propagates the pneumatic force when the brakes are 
activated, as shown in Figure 9. Railway brakes have three 
principal roles: 

• Reducing or stopping the speed of the train 

• Balancing its weight while on slopes to maintain a 
constant speed 

• Parking the train when stationary or at a station stop. 
The testing of the brake system can be done through an 

automated test setup. The pressure values in the brake pipe, 
braking cylinder and auxiliary reservoir are checked primarily to 
assess their effectiveness. These parameters are plotted as a 
function of time and compared to the design curves, which are 
determined under optimal conditions.  

The test system works using a pressure stabilisation approach. 
Proper connectors make it possible to associate the locomotive 
being tested with the brake-check apparatus. When the 
locomotive is connected, the pressure of the test system is 
adjusted by increasing the pressure value in the brake system 

being tested. This makes it possible to check the functionality of 
the brake by measuring the time required to reach a certain 
pneumatic pressure and then release it. This method is consistent 
with the starting preamble shown in Figure 2. After the test has 
been conducted, the system generates a report. As a sample, a 
case study of a test of an ordinary locomotive is shown in Table 
1. It is important to check these results to establish whether the 
obtained values lie within the functional intervals. If the data 
shows that the values are off design, action on the locomotive 
must be taken. The test protocol thus suggests the identification 
of the critical elements and, therefore, the need to proceed with 
the macro protocol shown for the maintenance of the railway 
elements (see Figure 3). After maintenance, the locomotive 
should be checked again to test the proper functional and safety 
conditions of the entire braking system. 

Conversely, if the results show that the values lie within the 
design intervals, the test should be considered as successfully 
completed. No action is therefore required for maintenance. This 
report is subsequently saved in the QR code for traceability 
reasons. In addition, the data obtained and the conditions 
observed should suggest and schedule the next round of tests.  

5. CONCLUSIONS 

This study dealt with the design and development of 
maintenance protocols for the railway industry. The novelty of 
this approach has been highlighted as the traceability of the 
maintenance operations in the railway structures, which are 
currently mostly performed without following a systematic 
approach. The fundamental concept starts with the idea of 
having a unique systematic, traceable and repeatable approach, 
which would address the problems associated with ‘human 
operator’ errors. The method described the QR code as a key 
element, which has proved to be important to keep track of the 
operations and the data related to a workpiece. The approach 
makes it possible to actuate corrections while processing in order 
to decrease the amount of time spent on the secondary repeated 
operations that are eventually required to ensure that the 
designed features fulfil their capabilities. The main protocol 
described a systematic practical approach where a specific 
component is treated in several phases. Within the protocol, the 
existence of a retroactive system makes it possible to actively 
interact with the system along with the in-line monitoring 
process. As a consequence, time is saved from making 
corrections that should be done, instead, at a post-processing 
phase. 

The case study concerning the application of the main 
protocol to the turning operations for the maintenance of a 
workpiece demonstrated the applicability of this approach in 
terms of input parameters and actuation systems. Through in-
line identification and by adjusting the most important 
parameters in turning, namely the depth of the cut, the spindle 
speed, the feed rate and the lubricant, it was possible to take an 
active control over the process outputs, which are the cutting 
force and the tool wear. 

The same main protocol was adapted to the testing 
procedures, as in the case of the braking tests for locomotives. 
Each phase was systematically followed. During the testing, the 
pressures applied in the braking system were actively monitored 
and adjusted to successfully carry out the testing procedures. If 
the test report showed negative outputs, the control would 
proceed to the maintenance operations, following the required 
steps already set out. 

 

Figure 9. Schematic drawing showing the pneumatic system of a train brake 
and the pneumatic action while braking: (a) main air tank, (b) generic pipe, 
(c) brake cylinder, (d) brake wheel, (e) exhaust pressure system and (f) central 
braking controls and emergency button. 
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Table 1. Sample results obtained from a brake quality control made on an ordinary locomotive. 

Type of control Measured Interval 
Measuring 

unit 
Results 

Pressure of the main tank (a) 8 7.5 … 9 bar Positive 

System pressure stabilised in the generic pipe (b) 5 5 ± 0.05 bar Positive 

Filling time up to 95 % of the maximum pressure of 
the brake cylinder (c) 

    

- M brake (d)  18 … 30 s Positive 

- V brake (d) 3 3 … 5 s Positive 

Brake release to a pressure of 0.4 bar at the brake 
cylinder 

    

- M brake (d)  40 … 60 s Positive 

- V brake (d) 16 15 … 20  s Positive 

Pressure decrease required to obtain full breaking (d) 1.5 1.5 ± 0.1 bar Positive 

Brake sensitivity (e) OK The brake must act within 1.2 s for a pressure decrease of 
0.6 bar in 6 s  

- Positive 

Brake non-sensitivity (e) OK The brake must not act for a general pressure decrease of 
0.3 bar in 60 s 

- Positive 

High pressure stroke OK  6 bar for a total duration of 2 s. 6 … 5.2 in 1 s bar Positive 

Capacity     

- Air loss in the generic pipe (b) 0 ≤ 0.1 bar/min bar Positive 

- Loss in the generic pipe (b) 0 ≤ 0.1 bar/5 min bar Positive 

- Loss of the brake cylinder (c) 0 ≤ 0.1 bar/5 min with a pressure in the generic pipe at 0 bar 
and constant pressure of the auxiliary tank 

bar Positive 

Clear test of the bilateral command OK With the generic pipe at 5 bar the auxiliary tank has to reach 
0 bar 

- Positive 

Test of the emergency button (f)     

- Empty the generic pipe through interventions 
in each device (b) 

OK The pressure of the generic pipe reaches 0 bar. The pressure 
of the brake cylinder is maximum 

- Positive 

- Restore 5 The pressure of the generic pipe reaches up to 5 bar. The 
pressure of the brake cylinder is 0 

bar Positive 

Testing of the brake command from each driving 
location 

    

Design pressure on the generic pipe (b)     

- when the air pressure of the main pipe (b) is 
stabilised, take the brake command (f) as 
‘released’ 

5 The pressure in the generic pipe is stable at 5 ± 0.05  bar Positive 

- when the air pressure of the main pipe (b) is 
stabilised, brake (f) with a subsequent release 
(c) 

5 The pressure in the generic pipe again reaches 5 ± 0.05  bar Positive 

Times of pressure loss in the generic pipe (b)     

- with the pressure of the generic pipe stable at 
5 bar, enable a pressure decrease of the generic 
pipe up to 3.5 bar (b) 

3 Time interval between 3 s and 4 s with a pressure 
decrease in the generic pipe 5 bar … 3.5 bar 

s Positive 

Time of pressure increase in the generic pipe (b)     

- with stabilised pressure in the generic pipe at 
3.5 bar, increase the pressure inside up to 5 bar 

8 Time interval between 3 and 4 s for a pressure increase in 
the generic pipe (3.5 bar … 5 bar) 

s Positive 

Variability of braking increase and release (d)     

- with a stabilised pressure of the generic pipe 
at 5 bar, decrease the pressure up to 5 bar with 
intermediate levels of 0.2 bar 

OK For each level, the pressure of the brake cylinder has to 
increase. With the pressure in the generic pipe at 3 bar, verify 
the stability of the pressure within the generic pipe for 1 min. 

Variation should be <= 0.1 bar 

- Positive 

- with a stabilised pressure in the generic pipe 
at 5 bar, starting from the generic pipe pressure 
at 3 bar, enable several pressure increases of 
0.2 bar up to 4.7 bar  

OK For each level, the pressure of the brake cylinder has to 
decrease 

- Positive 

Control of the direct brake (d)     

Variability of the braking action and release (d)     

- increase the pressure of the cylinder brake by 
0.2 bar at each level up to the maximum  

OK For each level, the pressure of the brake cylinder has to 
increase 

- Positive 

- decrease the pressure of the cylinder brake by 
0.2 bar at each level down to 0 bar. 

OK For each level, the pressure of the brake cylinder has to 
decrease 

- Positive 

Other     

Pipe and valve efficiency OK - - Positive 

Manometer efficiency OK - - Positive 

Parking brake efficiency OK - - Positive 

Efficiency of dynamic braking, tested at a constant 
speed of 20 km/h on a planar and linear track 

10 Allowed braking length ≤ 20 m m  

 



 

ACTA IMEKO | www.imeko.org December 2020 | Volume 9 | Number 4 | 11 

At the end of each process/test mapping, the QR code 
worked to keep track of these operations and maintain the 
traceability of the specific workpiece. 

The proposed protocols can also be applied to electrical 
improvements and maintenance in railway applications [38], [39]. 
Furthermore, such protocols may be implemented in measuring 
systems, which are already being experimented with in the 
railway structure, [40] and for continuous monitoring [41]. 
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